Welcome to the website of Professor Farrokh Ayazi's research group in the School of Electrical and Computer Engineering at the Georgia Institute of Technology. Research in the Integrated MEMS Laboratory relates to the design, analysis, fabrication, and characterization of Micro and Nano Electro-Mechanical Systems (MEMS and NEMS), with a focus on high Q resonators and resonant gyroscopes. High Q resonators have applications in 'mixed-domain microsystems' such as gyroscopes and accelerometers, low jitter clocks, energy harvesters, biochemical sensors for health and environmental monitoring, as well as wireless communications. On the system side, the group specializes on advance interface circuits and architectures for MEMS and Sensors. 

The Integrated MEMS Laboratory (IMEMS) is a unit member of the Center for MEMS and Microsystems Technologies (CMMT) and of the Institute for Electronics and Nanotechnology at Georgia Tech. 



Feature News

New Publication Alert

Cascaded collimator for atomic beams traveling in planar silicon devices

C Li, X Chai, B Wei, J Yang, A Daruwalla, F Ayazi, C Raman

Micro- and increasingly, nano-fabrication have enabled the miniaturization of atomic devices, from vapor cells to atom chips for Bose-Einstein condensation. Here we present microfabricated planar devices for thermal atomic beams. Etched microchannels were used to create highly collimated, continuous rubidium atom beams traveling parallel to a silicon wafer surface. Precise, lithographic definition of the guiding channels allowed for shaping and tailoring the velocity distributions in ways not possible using conventional machining. Multiple miniature beams with individually prescribed geometries were created, including collimated, focusing and diverging outputs. A “cascaded” collimator was realized with 40 times greater purity than conventional collimators. These localized, miniature atom beam sources can be a valuable resource for a number of quantum technologies, including atom interferometers, clocks, Rydberg atoms, and hybrid atom-nanophotonic systems, as well as enabling controlled studies of atom-surface interactions at the nanometer scale.

Nature Communications  10, Article number: 1831 (2019)